

A Comparison of Task Mapping Strategies on Two Generations of Cray Systems

February 18, 2014 SIAM Conference on Parallel Processing

Kevin Pedretti
CS R&D Technical Staff
Scalable System Software
Sandia National Laboratories

Torsten Hoefler
Assistant Professor
Scalable Parallel Computing Lab
ETH Zürich

Exceptional service in the

national

interest

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP

Outline

- Motivation
- Modeling Cray Gemini Network as a Graph (XE6 / XK7)
 - Topology
 - Static Routing Info
- MiniGhost Task Mapping Results
- Cray Aries XC30 Preview
- Conclusions

Why Task Mapping?

- Increase performance
 - By reducing the distance a message travels, its latency is reduced and it has less chance of competing with other messages for bandwidth
 - Minimize volume of communication => less network congestion
 - Net bandwidth / compute ratio getting much worse, scarce resource
- Reduce power (i.e., the performance bottleneck)
 - Data movement is energy intensive... move data as little as possible
 - Being oblivious to task mapping drives over-engineering of network,
 driving up both network power and system cost
- Put pressure on system software developers (like me) to implement task mapping interfaces (e.g., MPI graph comms)

Task Mapping is Important both Intra-Node and Inter-Node

Scalable Networks Are Sparse

1997 – 2006 SNL ASCI Red

Intel Custom Network

3-D Mesh

38 x 32 x 2

4510 Nodes

3.15 TFLOPS/s

2004 - 2012 SNL Red Storm

Cray XT3 SeaStar

3-D Mesh

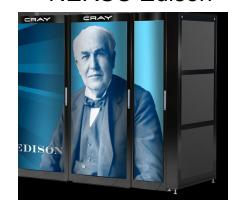
27 x 20 x 24

12960 Nodes

284 TFLOP/s

2011 – ACES Cielo

Cray XE6 Gemini


3-D Torus

16 x 12 x 24

8944 Nodes

1374 TFLOP/s

2013 – NERSC Edison

Cray XC30 Aries

Dragonfly

3-Levels: 16, 6, 14

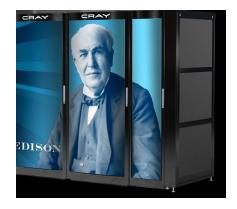
5192 Nodes

2390 TFLOP/s

4

Total BW / Injection BW Ratios

1997 - 2006SNL ASCI Red


2004 - 2012 SNL Red Storm

2011 – ACES Cielo

2013 -**NERSC Edison**

Intel

SeaStar / 3D Mesh Gemini / 3D Torus

Aries / Dragonfly

Total Node Injection: 1443 GB/s

22 TB/s

55 TB/s

48 TB/s

Total Network (all links):

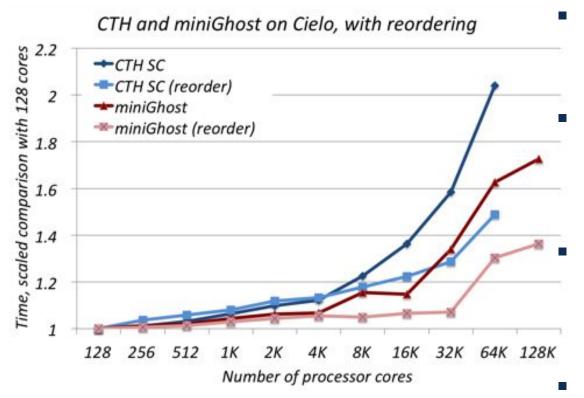
4752 GB/s

357 TB/s

281 TB/s

156 - 204 TB/s

Ratio: 3.3


16.2

5.1

3.3 - 4.25

Example Case of "Bad" Task Mapping

Interconnect is a 3-D torus.

Application talks to nearest 3-D neighbors.

Should be match made in heaven,

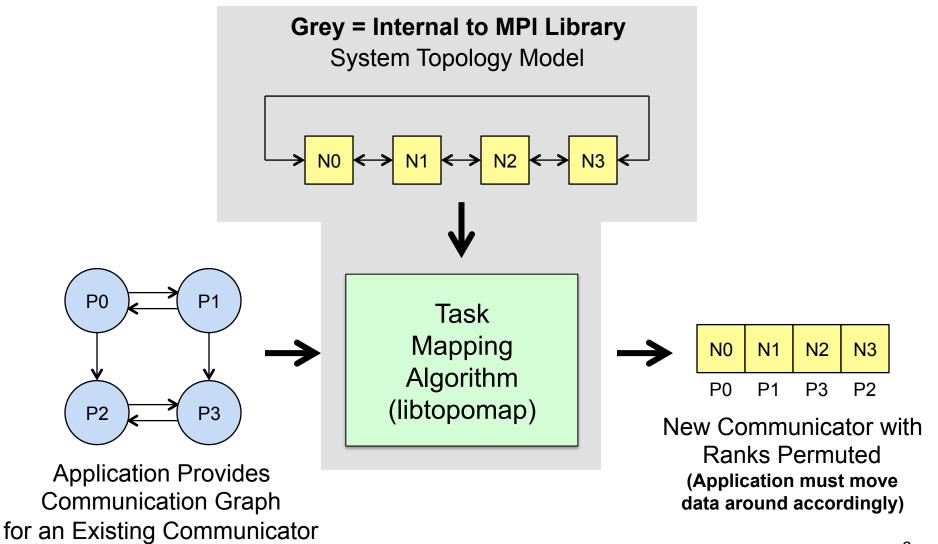
So what's going on?

- MiniGhost is a proxy application, represents CTH full application
- Explicit time-stepping, synchronous communication, 27-point stencil across 3-D grid
- Dark Red Curve:
 Original configuration
 scaled poorly after 16K cores
 (1024 nodes, 512 Geminis)
- Light Red Curve:
 Reorder MPI rank to node
 mapping to reduce off-node
 communication

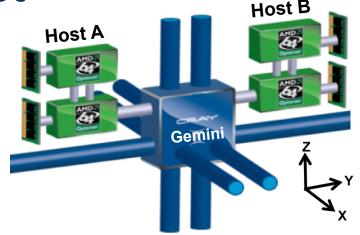
Original: 1x1x16 ranks/node Reorder: 2x2x4 ranks/node

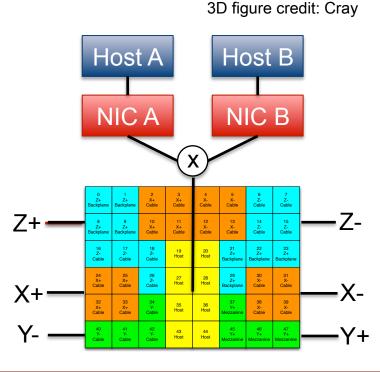
Outline

- Motivation
- Modeling Cray Gemini Network as a Graph (XE6 / XK7)
 - Topology
 - Static Routing Info
- MiniGhost Task Mapping Results
- Cray Aries XC30 Preview
- Conclusions


Wanted to Try Libtopomap on Cray

- Task mapping library created by Torsten Hoefler
 - Graph based, both app and system represented as a graph
 - Several strategies to map app graph to system graph
 Simple greedy, greedy considering routes, recursive bisection, graph similarity (Reverse Cuthill McKee), SCOTCH adapter, multicore partitioning, simulated annealing, ..
- Had to generate two input files for Libtopomap
 - topomap.txt
 - Vertices are hosts and routers, edges are network links
 - Directed graph, edge weights represent link speed
 - routes.txt (Cray specific extension)
 - X,Y,Z coordinate of each node
 - Static route from each source host to each destination host
 - Run some scripts to generate once per system, use many times


Task Mapping Example



Cray Gemini Interconnect

- Two nodes (hosts) per Gemini chip
- Gemini chip consists of:
 - Two network interfaces
 - 48 port router (48 "tiles")
- Gemini router ports organized into groups to form seven logical links
 - X+, X-, Y+, Y-, Z+, Z-, Host
 - XYZ links connected to neighbor Gemini chips to form 3-D torus
- Large set of performance counters
 - NIC and router counters
 - Cray Documentation (S-0025-10):
 Using the Cray Gemini Hardware
 Counters

Calculating Edge Weights

- Get map of each Gemini's 48 tiles from Cray database
- Link speeds are heterogeneous (!)

0 Z+ Backplane	1 Z+ Backplane	2 X+ Cable	3 X+ Cable	4 X- Cable	5 X- Cable	6 Z- Cable	7 Z- Cable
8 Z+ Backplane	9 Z+ Backplane	10 X+ Cable	11 X+ Cable	12 X- Cable	13 X- Cable	14 Z- Cable	15 Z- Cable
16 Z- Cable	17 Z- Cable	18 Z- Cable	19 Host	20 Host	21 Z+ Backplane	22 Z+ Backplane	23 Z+ Backplane
24 X+ Cable	25 X+ Cable	26 Z- Cable	27 Host	28 Host	29 Z+ Backplane	30 X- Cable	31 X- Cable
32 X+ Cable	33 X+ Cable	34 Y- Cable	35 Host	36 Host	37 Y+ Mezzanine	38 X- Cable	39 X- Cable
40 Y- Cable	41 Y- Cable	42 Y- Cable	43 Host	44 Host	45 Y+ Mezzanine	46 Y+ Mezzanine	47 Y+ Mezzanine

Link Type	Bandwidth
Mezzanine	2.34 GB/s
Backplane	1.88 GB/s
Cable	1.17 GB/s
Host	1.33 GB/s (est.)

Unidirectional Bandwidths

X Links, all:

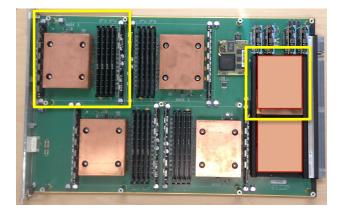
$$8 * 1.17 = 9.4 GB/s$$

Y Links, alternate every other:

$$4 * 2.34 = 9.4 \text{ GB/s (mezz)}$$

$$4 * 1.17 = 4.7 \text{ GB/s}$$

Z Links, every eighth slower:


$$8 * 1.88 = 15 GB/s (backpl)$$

$$8 * 1.17 = 9.4 GB/s$$

Cray Gemini Physical Packaging

1. Board = $1 \times 2 \times 1$

4 Nodes Per Board

2 Gemini's per Board

2. Cage = $1 \times 2 \times 8$

8 Boards per Cage

3. Cabinet = $1 \times 2 \times 24$

3 Cages Per Cabinet

LANL / SNL Cielo XE6

96 Cabinets (16 x 6 grid)

16 x 12 x 24 Torus

4608 Gemini chips

9216 Nodes (8944 Compute)

NCSA Blue Waters XE/XK

288 Cabinets (24 x 12 grid)

24 x 24 x 24 Torus

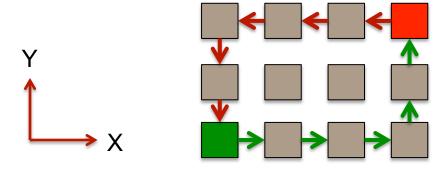
13824 Gemini chips

27648 Nodes (26864 Comp.)

ORNL Titan XK7

200 Cabinets (25 x 8 grid)

25 x 16 x 24 Torus


9600 Gemini chips

19200 Nodes (18688 Comp.)

Determining Static Routing Scheme

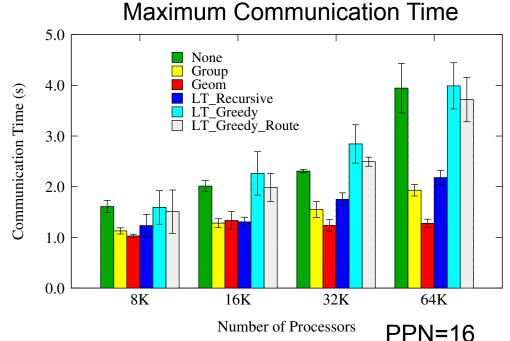
- Performed experiments to verify empirical counters matched routes output by "rtr --logical-routes" command
- Static routing
 - All packets from a given src to dst always travels the same path
 - The path from (src to dst) not the same as (dst to src) in general
 - Request and response packets follow different paths
- All routes completely traverse the X dimension, then completely traverse Y dimension, then Z last
 - More flexible routing if there are link failures, didn't verify
 - Should consider PUT ACK + GET REPLY backflows in system models

Cielo Cray XE6 topomap.txt


```
num: 13824w
# Mapping of each vertex to hostname or gemini name
0 nid00000
                 # host 0
1 nid00001  # host 1
2 nid000002 # host 2
3 nid00004  # host 4
[...]
9216 c0-0c0s0q0 # gemini 0
9217 c0-0c0s1q0 # gemini 1
[...]
# Start of adjacency lists, one per vertex
0 9216(104) # host 0 to gemini 0 link
1 9216(104) # 2nd host gemini 0
2 9217(104) # host 2 to gemini 1 link
3 9217(104) # 2nd host gemini 1
[...]
# Start of gemini adjacency lists, each has 2 host edges and 6 net edges
9216 0(104) 1(104) 9217(150) 9239(93) 9263(93) 9503(46) 9791(93) 13823(93)
9217 2(104) 3(104) 9216(150) 9218(150) 9262(93) 9502(46) 9790(93) 13822(93)
[...]
```

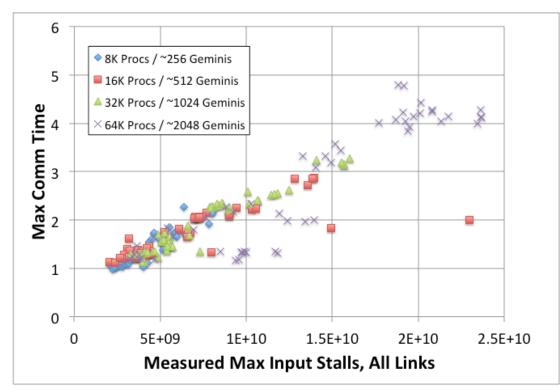
- 9216 Nodes, 4608 Geminis, 13824 Vertices, 46080 edges (27648 net edges)
- Net edge Hist.: 4608 4.6 GB/s (Y), 14976 9.3 GB/s (XYZ), 8064 15 GB/s (Z)
- 746 KB file

Outline

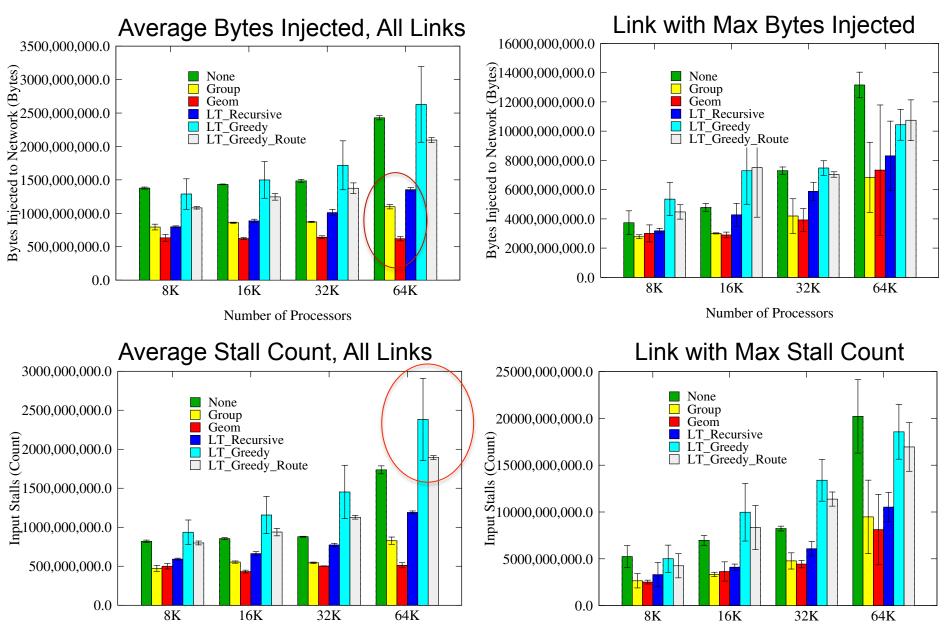


- Motivation
- Modeling Cray Gemini Network as a Graph (XE6 / XK7)
 - Topology
 - Static Routing Info
- MiniGhost Task Mapping Results
- Cray Aries XC30 Preview
- Conclusions

MiniGhost Performance


- MiniGhost configuration
 - Bulk synchronous mode
 - 27-point stencil 3-D grid
 - Weak scaling mode
 - Avg. of 5 production runs, error bars stddev
- Still analyzing Libtopomap results, debugging ongoing
- Observations
 - Reordering for multicore important, still upticking ("Group")
 - Minimize surface area by putting 2x2x4 subprob per node vs. 1x1x16
 - Leveraging geometric information pays off in this case (Mehmet's talk)
 - But, not all applications will have geometric information
 - Libtopomap's recursive bisection strategy is its best in this case, similar to reordering for multicore (LT uses Parmetis internally to do multicore ordering)
 - Greedy with routing is slightly better than without
 - Likely something wrong with Greedy strategy on Cray, still investigating

Correlations: Modeled vs. Measured



- Used Cray Gemini's perf.
 counters to measure network
 congestion empirically
 - Stall counter incremented when packet can not move towards destination
 - Maximum stall count among all links (X+/-,Y+/-, Z+/-, Host)
- Max stall metric found to have best correlation to max comm time, modeled (calculated) max congestion slightly worse
 - Interference from other jobs
 - All messages are not transferred simultaneously
 - Heterogeneous link speeds in the network, for which model does not consider

# Procs	Avg Hops	Modeled Max Congestion	Measured Max Stall Count
8K	.65	.47	.91
16K	.72	.61	.78
32K	.92	.92	.96
64K	.86	.86	.91
Overall	.83	.86	.92

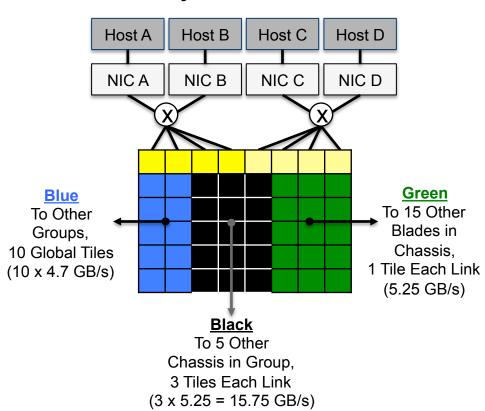
Gemini Router Performance Counters

Pedretti et al.: Using the Gemini Performance Counters, Cray Users' Group, 2013.

Number of Processors

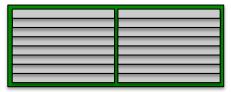
Number of Processors

Outline

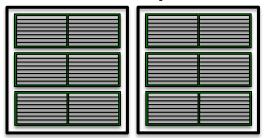


- Motivation
- Modeling Cray Gemini Network as a Graph (XE6 / XK7)
 - Topology
 - Static Routing Info
- MiniGhost Task Mapping Results
- Cray Aries XC30 Preview
- Conclusions

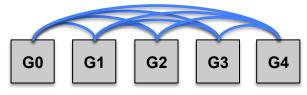
Cray Aries Interconnect


Cray Aries Blade

Gemini: 2 nodes, 62.9 GB/s routing bw Aries 4 nodes, 204.5 GB/s routing bw

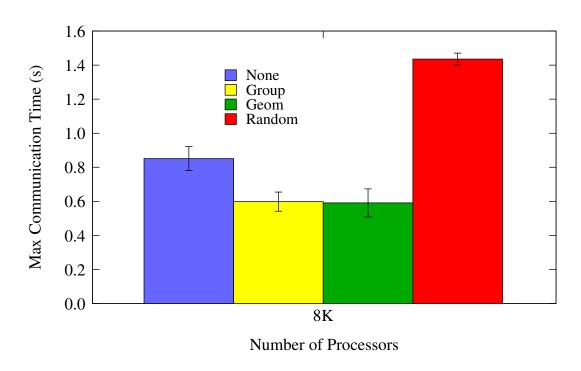

Aries has advanced adaptive routing

1. Chassis


16 Blades Per Chassis 16 Aries, 64 Nodes All-to-all Electrical Backplane

2. Group

6 Chassis Per Group 96 Aries, 384 Nodes Electrical Cables, 2-D All-to-All


3. Global

Up to 241 Groups
Up to 23136 Aries, 92544 Nodes
Optical Cables, All-to-All between Groups

NERSC Edison MiniGhost Results

- Ran with 16 cores per node
- 8192 procs = 512 nodes = 128 Aries chips
- For Geom, treat Dragonfly as a 14 x 6 x 16 torus
 - 14 groups, each group 6 by 16 2-D all-to-all
- Geom doesn't improve on multicore grouping, random bad

Conclusions

- Task mapping is important
- Devised method for building graph representation of Cray Gemini-based systems
 - Accurate edge weights
 - Exact routing information
- Demonstrated benefit for MiniGhost
 - Simple process grouping for multicore has big payoff
 - 3-D mesh app on 3-D torus network should be a good match
 - Future work to examine irregular applications
- Cray Aries / XC30 may be less sensitive to task mapping

Acknowledgements

- Bob Alverson (Cray)
- Richard Barrett (SNL)
- Jim Brandt (SNL)
- Karen Devine (SNL)
- Ann Gentile (SNL)
- Larry Kaplan (Cray)
- Vitus Leung (SNL)
- Stephen Olivier (SNL)
- Courtenay Vaughan (SNL)
- Sivasankaran Rajamanickam (SNL)